This article reviews the role of reparametrization invariance (the invariance of the properties of a system with respect to the choice of the co-ordinate system used to describe it) in deriving stochastic equations that describe the growth of surfaces. By imposing reparametrization invariance on a system, the authors identify the physical origin of many of the terms in its growth equations. Both continuum-growth equations for interfaces and equations for the coarse-grained evolution of discrete-lattice models are derived with this method. A detailed analysis of the discrete-lattice case and its small-gradient expansion provides a physical basis for terms found in commonly studied growth equations. The reparametrization-invariant formulation of growth processes also has the advantage of allowing one to model shadowing effects that are lost in the no-overhang approximation and to conserve underlying symmetries of the system that are lost in a small-gradient expansion. Finally, a knowledge of the full equation of motion, beyond the lowest-order gradient expansion, may be relevant in problems where the usual perturbative renormalization methods fail.

Stochastic growth equations and reparametrization invariance

MARITAN, AMOS;TOIGO, FLAVIO;
1996

Abstract

This article reviews the role of reparametrization invariance (the invariance of the properties of a system with respect to the choice of the co-ordinate system used to describe it) in deriving stochastic equations that describe the growth of surfaces. By imposing reparametrization invariance on a system, the authors identify the physical origin of many of the terms in its growth equations. Both continuum-growth equations for interfaces and equations for the coarse-grained evolution of discrete-lattice models are derived with this method. A detailed analysis of the discrete-lattice case and its small-gradient expansion provides a physical basis for terms found in commonly studied growth equations. The reparametrization-invariant formulation of growth processes also has the advantage of allowing one to model shadowing effects that are lost in the no-overhang approximation and to conserve underlying symmetries of the system that are lost in a small-gradient expansion. Finally, a knowledge of the full equation of motion, beyond the lowest-order gradient expansion, may be relevant in problems where the usual perturbative renormalization methods fail.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2505966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 129
social impact