The study uses the finite-element method to analyse the stress field in a perfectly bonded hip prosthesis arising from loading through body weight. Special attention is paid to the accuracy of the numerical analysis, and adaptive mesh refinement is introduced to reduce the discretisation error. The finite-element procedure developed is especially well suited to analyse the behaviour of a bonded interface as it is capable of calculating accurately the stress at the nodal positions while satisfying the natural discontinuity in the stress field at this location. An orthotropic material model is used for the representation of the behaviour of the bone, and an axisymmetric geometry with non-symmetrical loading is adopted for the analysis. The results demonstrate the usefulness of adaptive mesh refinement and the significance of adopting anisotropic material modelling in the context of tissue/prosthesis interaction.

Adaptive finite-element approach for analysis of bone/prosthesis interaction

NATALI, ARTURO
1995

Abstract

The study uses the finite-element method to analyse the stress field in a perfectly bonded hip prosthesis arising from loading through body weight. Special attention is paid to the accuracy of the numerical analysis, and adaptive mesh refinement is introduced to reduce the discretisation error. The finite-element procedure developed is especially well suited to analyse the behaviour of a bonded interface as it is capable of calculating accurately the stress at the nodal positions while satisfying the natural discontinuity in the stress field at this location. An orthotropic material model is used for the representation of the behaviour of the bone, and an axisymmetric geometry with non-symmetrical loading is adopted for the analysis. The results demonstrate the usefulness of adaptive mesh refinement and the significance of adopting anisotropic material modelling in the context of tissue/prosthesis interaction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2506129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact