Kinetic analysis and integrated systems modeling have contributed substantially to our understanding of the physiology and pathophysiology of metabolic systems and the distribution and clearance of drugs in humans and animals. In recent years, many researchers have become aware of the usefulness of these techniques in the experimental design. With this has come the recognition that the discipline of kinetic analysis requires its own expertise. The expertise can impact experimental design in many ways, from the collaborative and service activities in which individuals interact in formal ways to the development of software tools to aid in kinetic analysis. The purpose of this report is to describe one such software tool, Simulation, Analysis, and Modeling Software II (SAAM II). In the first part, we describe in general how the user can take advantage of the capabilities of the software system, and in the second part, we give three specific examples using multicompartmental models found in lipoprotein (apolipoprotein B [apoB] kinetics) and diabetes (glucose minimal model) research.

SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies.

COBELLI, CLAUDIO;
1998

Abstract

Kinetic analysis and integrated systems modeling have contributed substantially to our understanding of the physiology and pathophysiology of metabolic systems and the distribution and clearance of drugs in humans and animals. In recent years, many researchers have become aware of the usefulness of these techniques in the experimental design. With this has come the recognition that the discipline of kinetic analysis requires its own expertise. The expertise can impact experimental design in many ways, from the collaborative and service activities in which individuals interact in formal ways to the development of software tools to aid in kinetic analysis. The purpose of this report is to describe one such software tool, Simulation, Analysis, and Modeling Software II (SAAM II). In the first part, we describe in general how the user can take advantage of the capabilities of the software system, and in the second part, we give three specific examples using multicompartmental models found in lipoprotein (apolipoprotein B [apoB] kinetics) and diabetes (glucose minimal model) research.
1998
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2508592
Citazioni
  • ???jsp.display-item.citation.pmc??? 88
  • Scopus 391
  • ???jsp.display-item.citation.isi??? 375
social impact