lucose effectiveness is an important determinant of glucose tolerance that can be derived from minimal model analysis of an intravenous glucose tolerance test (IVGTT). However, recent evidence suggests that glucose effectiveness is overestimated by minimal model analysis. Here we compare a new model-independent estimate of glucose effectiveness with the minimal model estimate by reanalyzing published data in which insulin-dependent diabetic subjects were each given IVGTTs under two conditions (Quon, M. J., C. Cochran, S. I. Taylor, and R. C. Eastman. Diabetes 43: 890-896, 1994). In one case, a basal insulin level was maintained (BI-IVGTT). In the second case, a dynamic insulin response was recreated (DI-IVGTT). Our results show that minimal model glucose effectiveness is very similar to the model-independent measurement during a BI-IVGTT but is three times higher during a DI-IVGTT. To investigate the causes of minimal model overestimation in the presence of a dynamic insulin response, Monte Carlo simulation studies on a two-compartment model of glucose kinetics with various insulin response patterns were performed. Results suggest that minimal model overestimation is due to single-compartment representation of glucose kinetics that results in a critical oversimplification in the presence of increasingly dynamic insulin secretion patterns.

Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling.

COBELLI, CLAUDIO;
1998

Abstract

lucose effectiveness is an important determinant of glucose tolerance that can be derived from minimal model analysis of an intravenous glucose tolerance test (IVGTT). However, recent evidence suggests that glucose effectiveness is overestimated by minimal model analysis. Here we compare a new model-independent estimate of glucose effectiveness with the minimal model estimate by reanalyzing published data in which insulin-dependent diabetic subjects were each given IVGTTs under two conditions (Quon, M. J., C. Cochran, S. I. Taylor, and R. C. Eastman. Diabetes 43: 890-896, 1994). In one case, a basal insulin level was maintained (BI-IVGTT). In the second case, a dynamic insulin response was recreated (DI-IVGTT). Our results show that minimal model glucose effectiveness is very similar to the model-independent measurement during a BI-IVGTT but is three times higher during a DI-IVGTT. To investigate the causes of minimal model overestimation in the presence of a dynamic insulin response, Monte Carlo simulation studies on a two-compartment model of glucose kinetics with various insulin response patterns were performed. Results suggest that minimal model overestimation is due to single-compartment representation of glucose kinetics that results in a critical oversimplification in the presence of increasingly dynamic insulin secretion patterns.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2508636
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 60
  • ???jsp.display-item.citation.isi??? ND
social impact