The presence of kinetochore and DNA synthesis in micronuclei (MN) induced in Chinese hamster ovary (CHO) cells by clastogenic and aneuploidogenic substances such as mitomycin C (MMC) and colchicine was determined by immunofluorescence technique using CREST antikinetochore antibodies and anti-bromodeoxyuridine (BrdUrd) antibodies. A cytofluorimetric analysis was also performed. Colchicine significantly increased micronucleated cells at least up to 96 h from the end of treatment. As expected, among colchicine-induced micronucleated cells the majority contained at least one CREST + MN. MMC induced a significant increase in micronucleated cells up to 120 h from the end of treatment and the great majority of MN lacked kinetochore fluorescence, indicating that MMC-induced MN were derived from acentric fragments. However, colchicine and MMC at 48 and 72 h from the end of treatment induced a significant increase of CREST- and CREST + MN, respectively, suggesting an induction of clastogenicity by colchicine and aneuploidy by MMC. The clastogenic effect of colchicine after 48 h was also confirmed by the presence of chromatid fragments in metaphase cells. A cytofluorimetric analysis indicated that, as aspected, colchicine and MMC interfere with the G2/M and S phases, respectively; however, a slight interference of colchicine with the S phase was also observed. DNA synthesis was present in MN and it was in most cases synchronous with synthesis in the main nucleus. The frequency of cells with MN in S phase observed in untreated or MMC-treated cells is in agreement with the proportion of cells without MN showing DNA synthesis. On the contrary, the frequency of cells with MN in S phase observed in colchicine-treated cells was significantly lower than that observed in control and MMC-treated cells.

Identification of kinetochores and DNA synthesis in micronuclei induced by mitomycin C and colchicine in Chinese hamster ovary cells.

MAJONE, FRANCA;
1992

Abstract

The presence of kinetochore and DNA synthesis in micronuclei (MN) induced in Chinese hamster ovary (CHO) cells by clastogenic and aneuploidogenic substances such as mitomycin C (MMC) and colchicine was determined by immunofluorescence technique using CREST antikinetochore antibodies and anti-bromodeoxyuridine (BrdUrd) antibodies. A cytofluorimetric analysis was also performed. Colchicine significantly increased micronucleated cells at least up to 96 h from the end of treatment. As expected, among colchicine-induced micronucleated cells the majority contained at least one CREST + MN. MMC induced a significant increase in micronucleated cells up to 120 h from the end of treatment and the great majority of MN lacked kinetochore fluorescence, indicating that MMC-induced MN were derived from acentric fragments. However, colchicine and MMC at 48 and 72 h from the end of treatment induced a significant increase of CREST- and CREST + MN, respectively, suggesting an induction of clastogenicity by colchicine and aneuploidy by MMC. The clastogenic effect of colchicine after 48 h was also confirmed by the presence of chromatid fragments in metaphase cells. A cytofluorimetric analysis indicated that, as aspected, colchicine and MMC interfere with the G2/M and S phases, respectively; however, a slight interference of colchicine with the S phase was also observed. DNA synthesis was present in MN and it was in most cases synchronous with synthesis in the main nucleus. The frequency of cells with MN in S phase observed in untreated or MMC-treated cells is in agreement with the proportion of cells without MN showing DNA synthesis. On the contrary, the frequency of cells with MN in S phase observed in colchicine-treated cells was significantly lower than that observed in control and MMC-treated cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2509607
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact