The relationship between DNA mono- and di-adducts and genetic effects induced by the pyranocoumarin 8,8-desmethylxanthyletine (homopsoralen) HP and 365 nm radiation (UVA) was investigated in the diploid yeast strain D7 (Saccharomyces cerevisiae) taking 8-methoxypsoralen (8-MOP) as a reference compound. The number of DNA cross-links (CLs) induced was determined using alkaline step elution analysis. The induction and removal of total photo-adducts was followed using radioactively labelled compounds. HP showed the same photobinding capacity as 8-MOP. As a function of UVA dose, it was less effective than 8-MOP for the induction of CLs and genetic effects. However, as a function of CLs induced, HP was shown to be more effective for the induction of lethal effects and mitotic recombination than 8-MOP but equally effective for the induction of mutations. The results suggest that, although CLs are recognized as genetically effective lesions, at a given number of CLs, HP induced mono-adducts efficiently contribute to the induction of lethal effects and mitotic recombination but less to the induction of mutations. Using a re-irradiation protocol, HP was brought to yield the same relative amounts of CLs at the same number of total adducts as single UVA exposures with 8-MOP. In these conditions, mutation induction and the kinetics for the removal of photo-adducts were the same for both agents indicating that not only the removal of adducts but also mutation induction are highly dependent on the relative level of CLs induced.

Genetic effects and repair of DNA photo-adducts induced by 8-methoxypsoralen and homopsoralen (pyranocoumarin) in diploid yeast.

DALL'ACQUA, FRANCESCO;VEDALDI, DANIELA ESTER
1990

Abstract

The relationship between DNA mono- and di-adducts and genetic effects induced by the pyranocoumarin 8,8-desmethylxanthyletine (homopsoralen) HP and 365 nm radiation (UVA) was investigated in the diploid yeast strain D7 (Saccharomyces cerevisiae) taking 8-methoxypsoralen (8-MOP) as a reference compound. The number of DNA cross-links (CLs) induced was determined using alkaline step elution analysis. The induction and removal of total photo-adducts was followed using radioactively labelled compounds. HP showed the same photobinding capacity as 8-MOP. As a function of UVA dose, it was less effective than 8-MOP for the induction of CLs and genetic effects. However, as a function of CLs induced, HP was shown to be more effective for the induction of lethal effects and mitotic recombination than 8-MOP but equally effective for the induction of mutations. The results suggest that, although CLs are recognized as genetically effective lesions, at a given number of CLs, HP induced mono-adducts efficiently contribute to the induction of lethal effects and mitotic recombination but less to the induction of mutations. Using a re-irradiation protocol, HP was brought to yield the same relative amounts of CLs at the same number of total adducts as single UVA exposures with 8-MOP. In these conditions, mutation induction and the kinetics for the removal of photo-adducts were the same for both agents indicating that not only the removal of adducts but also mutation induction are highly dependent on the relative level of CLs induced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2511388
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact