Both alkylphosphinates and inorganic phosphinates (based on sodium, calcium, magnesium or zinc) have been recently proposed as flame retardants for polyesters, polyamides and polyurethane foams as well. The main aim of this work was to compare the flame retardant effectiveness of inorganic (already proofed in PU foams) and organic phosphinates in PU foams which have never been used in polyurethane (PU) foams. The thermal stability in nitrogen and air as well as limiting oxygen index and cone calorimeter behaviour have been studied to assess the effectiveness of such flame retardants in PU foams. The results obtained showed that both inorganic and organic phosphinates are effective in enhancing fire behaviour of PU foams since they improve thermal stability, LOI and fire performance. Cone calorimetry highlighted the flame inhibition action in the gas phase due to the release of phosphorus-containing molecules. The better results obtained for inorganic phosphinate are probably related to the better quality of the char layer developed during burning, but may also be related to the higher phosphorus content of such flame retardant with respect the other ones. It was also verified that both inorganic and organic phosphinate containing N-synergic compound showed a fuel dilution effect, deriving from water and/or ammonia release in the gas phase.

Synthesis of phosphinated polyurethane foams with improved fire behaviour

LORENZETTI, ALESSANDRA;MODESTI, MICHELE;BESCO, STEFANO;ROSO, MARTINA
2012

Abstract

Both alkylphosphinates and inorganic phosphinates (based on sodium, calcium, magnesium or zinc) have been recently proposed as flame retardants for polyesters, polyamides and polyurethane foams as well. The main aim of this work was to compare the flame retardant effectiveness of inorganic (already proofed in PU foams) and organic phosphinates in PU foams which have never been used in polyurethane (PU) foams. The thermal stability in nitrogen and air as well as limiting oxygen index and cone calorimeter behaviour have been studied to assess the effectiveness of such flame retardants in PU foams. The results obtained showed that both inorganic and organic phosphinates are effective in enhancing fire behaviour of PU foams since they improve thermal stability, LOI and fire performance. Cone calorimetry highlighted the flame inhibition action in the gas phase due to the release of phosphorus-containing molecules. The better results obtained for inorganic phosphinate are probably related to the better quality of the char layer developed during burning, but may also be related to the higher phosphorus content of such flame retardant with respect the other ones. It was also verified that both inorganic and organic phosphinate containing N-synergic compound showed a fuel dilution effect, deriving from water and/or ammonia release in the gas phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2523999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 61
social impact