We report here on X-ray and IR observations of the Anomalous X-ray Pulsar (AXP) 1RXS J170849-400910. First, we report on new XMM-Newton, Swift-XRT and Chandra observations of this AXP, which confirm the intensity-hardness correlation observed in the long term X-ray monitoring of this source. These new X-ray observations show that the AXP flux is rising again, and the spectrum hardening. If the increase of the source intensity is indeed connected with the glitches and a possible bursting activity, we expect this source to enter in a bursting active phase around 2006-2007. Second, we report on deep IR observations of 1RXS J170849-400910, taken with the VLT-NACO adaptive optics, showing that there are many weak sources consistent with the AXP position. Neither star A or B, as previously proposed by different authors, might yet be conclusively recognised as the IR counterpart of 1RXS J170849-400910. Third, using Monte Carlo simulations, we re-address the calculation of the significance of the absorption line found in a phase-resolved spectrum of this source, and interpreted as a resonant scattering cyclotron feature.

X-ray intensity-hardness correlation and deep IR observations of the anomalous X-ray pulsar 1RXS J170849-400910

TUROLLA, ROBERTO;
2007

Abstract

We report here on X-ray and IR observations of the Anomalous X-ray Pulsar (AXP) 1RXS J170849-400910. First, we report on new XMM-Newton, Swift-XRT and Chandra observations of this AXP, which confirm the intensity-hardness correlation observed in the long term X-ray monitoring of this source. These new X-ray observations show that the AXP flux is rising again, and the spectrum hardening. If the increase of the source intensity is indeed connected with the glitches and a possible bursting activity, we expect this source to enter in a bursting active phase around 2006-2007. Second, we report on deep IR observations of 1RXS J170849-400910, taken with the VLT-NACO adaptive optics, showing that there are many weak sources consistent with the AXP position. Neither star A or B, as previously proposed by different authors, might yet be conclusively recognised as the IR counterpart of 1RXS J170849-400910. Third, using Monte Carlo simulations, we re-address the calculation of the significance of the absorption line found in a phase-resolved spectrum of this source, and interpreted as a resonant scattering cyclotron feature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2532701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 32
social impact