Modern advances in the area of intelligent agents have led to the concept of cognitive robots. A cognitive robot is not only able to perceive complex stimuli from the environment, but also to reason about them and to act coherently. Computer vision-based recognition systems serve the perception task, but they also go beyond it by finding challenging applications in other fields such as video surveillance, HCI, content-based video analysis and motion capture. In this context, we propose an automatic system for real-time human action recognition. We use the Kinect sensor and the tracking system in [1] to robustly detect and track people in the scene. Next, we estimate the 3D optical flow related to the tracked people from point cloud data only and we summarize it by means of a 3D grid-based descriptor. Finally, temporal sequences of descriptors are classified with the Nearest Neighbor technique and the overall application is tested on a newly created dataset. Experimental results show the effectiveness of the proposed approach.

Human Action Recognition from RGB-D Frames Based on Real-Time 3D Optical Flow Estimation

MUNARO, MATTEO;MENEGATTI, EMANUELE
2012

Abstract

Modern advances in the area of intelligent agents have led to the concept of cognitive robots. A cognitive robot is not only able to perceive complex stimuli from the environment, but also to reason about them and to act coherently. Computer vision-based recognition systems serve the perception task, but they also go beyond it by finding challenging applications in other fields such as video surveillance, HCI, content-based video analysis and motion capture. In this context, we propose an automatic system for real-time human action recognition. We use the Kinect sensor and the tracking system in [1] to robustly detect and track people in the scene. Next, we estimate the 3D optical flow related to the tracked people from point cloud data only and we summarize it by means of a 3D grid-based descriptor. Finally, temporal sequences of descriptors are classified with the Nearest Neighbor technique and the overall application is tested on a newly created dataset. Experimental results show the effectiveness of the proposed approach.
2012
Proc. of Biologically Inspired Cognitive Architectures 2012
9783642342738
9783642342745
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2533623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 10
social impact