The unique fluctuation–dissipation theorem for equilibrium stands in contrast with the wide variety of nonequilibrium linear response formulae. Their most traditional approach is 'analytic', which, in the absence of detailed balance, introduces the logarithm of the stationary probability density as observable. The theory of dynamical systems offers an alternative with a formula that continues to work even when the stationary distribution is not smooth. We show that this method works equally well for stochastic dynamics, and we illustrate it with a numerical example for the perturbation of circadian cycles. A second 'probabilistic' approach starts from dynamical ensembles and expands the probability weights on path space. This line suggests new physical questions, as we meet the frenetic contribution to linear response, and the relevance of the change in dynamical activity in the relaxation to a (new) nonequilibrium condition.

An update on the nonequilibrium linear response

BAIESI, MARCO;
2013

Abstract

The unique fluctuation–dissipation theorem for equilibrium stands in contrast with the wide variety of nonequilibrium linear response formulae. Their most traditional approach is 'analytic', which, in the absence of detailed balance, introduces the logarithm of the stationary probability density as observable. The theory of dynamical systems offers an alternative with a formula that continues to work even when the stationary distribution is not smooth. We show that this method works equally well for stochastic dynamics, and we illustrate it with a numerical example for the perturbation of circadian cycles. A second 'probabilistic' approach starts from dynamical ensembles and expands the probability weights on path space. This line suggests new physical questions, as we meet the frenetic contribution to linear response, and the relevance of the change in dynamical activity in the relaxation to a (new) nonequilibrium condition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2572560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 103
social impact