Mechanically-induced wood flow welding, without any adhesive, is here shown to rapidly yield wood joints satisfying the relevant requirements for structural application. The mechanism of mechanically-induced vibrational wood flow welding is shown to be due mostly to the melting and flowing of the amorphous polymer materials interconnecting wood cells, mainly lignin, but also some hemicelluloses. This causes the partial detachment of long wood cells and wood fibres and the formation of an entanglement network in a matrix of melted material which then solidifies. Thus, it forms a wood cell/fibre entanglement network composite having a molten lignin polymer matrix. During the welding period, some of the detached wood fibres no longer held by the interconnecting material are pushed out of the joint as excess fibre. Cross-linking chemical reactions of lignin and of carbohydrate-derived furfural also occur. Their presence has been identified by CP-MAS 13C NMR. These reactions are, however, relatively minor contributors during the very short welding period. Their contribution increases after welding has finished, explaining why relatively longer holding times under pressure after the end of welding contribute strongly to obtaining a good bond.

Solid wood joints by in situ welding of structural wood constituents

ZANETTI, MICHELA;
2004

Abstract

Mechanically-induced wood flow welding, without any adhesive, is here shown to rapidly yield wood joints satisfying the relevant requirements for structural application. The mechanism of mechanically-induced vibrational wood flow welding is shown to be due mostly to the melting and flowing of the amorphous polymer materials interconnecting wood cells, mainly lignin, but also some hemicelluloses. This causes the partial detachment of long wood cells and wood fibres and the formation of an entanglement network in a matrix of melted material which then solidifies. Thus, it forms a wood cell/fibre entanglement network composite having a molten lignin polymer matrix. During the welding period, some of the detached wood fibres no longer held by the interconnecting material are pushed out of the joint as excess fibre. Cross-linking chemical reactions of lignin and of carbohydrate-derived furfural also occur. Their presence has been identified by CP-MAS 13C NMR. These reactions are, however, relatively minor contributors during the very short welding period. Their contribution increases after welding has finished, explaining why relatively longer holding times under pressure after the end of welding contribute strongly to obtaining a good bond.
2004
File in questo prodotto:
File Dimensione Formato  
Gfeller et al_2004.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso gratuito
Dimensione 354.3 kB
Formato Adobe PDF
354.3 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2573973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
  • OpenAlex ND
social impact