In this work, we report on a single-step Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) process for the synthesis of iron(III) oxide based nanomaterials. A key feature of the adopted fabrication strategy is the use of a fluorinated Fe(II) b-diketonate diamine precursor, enabling a homogeneous Fe2O3 in-situ doping and resulting in a tunable fluorine content as a function of deposition temperature. To this regard, a detailed study of the nature and amount of fluorinecontaining moieties is strongly required in view of the process optimization. Specifically, X-ray Photoelectron Spectroscopy (XPS) analysis represents a strategic tool to evaluate the system chemical composition, and also to evidence the presence of fluorine in different chemical states, such as lattice fluorine (F-Fe) and traces of precursor residuals (CFx) at the system surface. In the present study, spectroscopic data are presented and discussed in detail for a representative Fe2O3 specimen.

Fluorine-Doped Iron Oxide Nanomaterials by Plasma Enhanced-CVD: An XPS Study

CARRARO, GIORGIO;GASPAROTTO, ALBERTO;MACCATO, CHIARA;
2013

Abstract

In this work, we report on a single-step Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) process for the synthesis of iron(III) oxide based nanomaterials. A key feature of the adopted fabrication strategy is the use of a fluorinated Fe(II) b-diketonate diamine precursor, enabling a homogeneous Fe2O3 in-situ doping and resulting in a tunable fluorine content as a function of deposition temperature. To this regard, a detailed study of the nature and amount of fluorinecontaining moieties is strongly required in view of the process optimization. Specifically, X-ray Photoelectron Spectroscopy (XPS) analysis represents a strategic tool to evaluate the system chemical composition, and also to evidence the presence of fluorine in different chemical states, such as lattice fluorine (F-Fe) and traces of precursor residuals (CFx) at the system surface. In the present study, spectroscopic data are presented and discussed in detail for a representative Fe2O3 specimen.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2576285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact