In the setting of the sub-Riemannian Heisenberg group H^n, we introduce and study the classes of t- and intrinsic graphs of bounded variation. For both notions we prove the existence of non-parametric area-minimizing surfaces, i.e., of graphs with the least possible area among those with the same boundary. For minimal graphs we also prove a local boundedness result which is sharp at least in the case of t-graphs in H^1.

Graphs of bounded variation, existence and local boundedness of non-parametric minimal surfaces in Heisenberg groups

VITTONE, DAVIDE
2014

Abstract

In the setting of the sub-Riemannian Heisenberg group H^n, we introduce and study the classes of t- and intrinsic graphs of bounded variation. For both notions we prove the existence of non-parametric area-minimizing surfaces, i.e., of graphs with the least possible area among those with the same boundary. For minimal graphs we also prove a local boundedness result which is sharp at least in the case of t-graphs in H^1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2576297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact