In the standard model the mass of elementary particles is considered as a dynamical property emerging from their interaction with the Higgs field. We show that this assumption implies peculiar deviations from the law of universal gravitation in its distance and mass dependence, as well as from the superposition principle. The experimental observation of the predicted deviations from the law of universal gravitation seems out of reach. However, we argue that a new class of experiments aimed at studying the influence of surrounding masses on the gravitational force— similar to the ones performed by Quirino Majorana almost a century ago—could be performed to test the superposition principle and to give direct limits on the presence of nonminimal couplings between the Higgs field and the spacetime curvature. From the conceptual viewpoint, the violation of the superposition principle for gravitational forces due to the Higgs field creates a conflict with the notion that gravitational potentials, as assumed in Newtonian gravitation or in post-Newtonian parameterizations of metric theories, are well-defined concepts to describe gravity in their non-relativistic limit.

Gravitational vacuum polarization phenomena due to the Higgs field

ONOFRIO, ROBERTO
2012

Abstract

In the standard model the mass of elementary particles is considered as a dynamical property emerging from their interaction with the Higgs field. We show that this assumption implies peculiar deviations from the law of universal gravitation in its distance and mass dependence, as well as from the superposition principle. The experimental observation of the predicted deviations from the law of universal gravitation seems out of reach. However, we argue that a new class of experiments aimed at studying the influence of surrounding masses on the gravitational force— similar to the ones performed by Quirino Majorana almost a century ago—could be performed to test the superposition principle and to give direct limits on the presence of nonminimal couplings between the Higgs field and the spacetime curvature. From the conceptual viewpoint, the violation of the superposition principle for gravitational forces due to the Higgs field creates a conflict with the notion that gravitational potentials, as assumed in Newtonian gravitation or in post-Newtonian parameterizations of metric theories, are well-defined concepts to describe gravity in their non-relativistic limit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2578560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact