In this paper we address the design of network architectures for the Internet of Things by proposing practical algorithms to augment IETF CoAP/6LoWPAN protocol stacks with congestion control functionalities. Our design is inspired by previous theoretical work on back pressure routing and is targeted toward Web-based architectures featuring bidirectional data flows made up of CoAP request/response pairs. Here, we present three different cross-layer and fully decentralized congestion control schemes and compare them against ideal back pressure and current UDP-based protocol stacks. Hence, we discuss results obtained using ns-3 through an extensive simulation campaign for two different scenarios: unidirectional and upstream flows and bidirectional Web-based CoAP flows. Our results confirm that the proposed congestion control algorithms perform satisfactorily in both scenarios for a wide range of values of their configuration parameters, and are amenable to the implementation onto existing protocol stacks for embedded sensor devices.

Back Pressure Congestion Control for CoAP/6LoWPAN Networks

ROSSI, MICHELE;ZORZI, MICHELE
2014

Abstract

In this paper we address the design of network architectures for the Internet of Things by proposing practical algorithms to augment IETF CoAP/6LoWPAN protocol stacks with congestion control functionalities. Our design is inspired by previous theoretical work on back pressure routing and is targeted toward Web-based architectures featuring bidirectional data flows made up of CoAP request/response pairs. Here, we present three different cross-layer and fully decentralized congestion control schemes and compare them against ideal back pressure and current UDP-based protocol stacks. Hence, we discuss results obtained using ns-3 through an extensive simulation campaign for two different scenarios: unidirectional and upstream flows and bidirectional Web-based CoAP flows. Our results confirm that the proposed congestion control algorithms perform satisfactorily in both scenarios for a wide range of values of their configuration parameters, and are amenable to the implementation onto existing protocol stacks for embedded sensor devices.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2633048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
social impact