In this paper a multiscale model is provided to assess the toughening improvements in nanoparticle filled polymers caused by the formation of localised plastic shear bands, initiated by the stress concentrations around nanoparticles. The model quantifies the energy absorbed at the nanoscale and accounts for the emergence of an interphase zone around the nanoparticles. It is proved that the elastic properties of the interphase, which are different from those of the matrix, due to chemical interactions, highly affect the stress field rising around particles and the energy dissipation at the nanoscale

Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: A multiscale analytical model

ZAPPALORTO, MICHELE;QUARESIMIN, MARINO
2013

Abstract

In this paper a multiscale model is provided to assess the toughening improvements in nanoparticle filled polymers caused by the formation of localised plastic shear bands, initiated by the stress concentrations around nanoparticles. The model quantifies the energy absorbed at the nanoscale and accounts for the emergence of an interphase zone around the nanoparticles. It is proved that the elastic properties of the interphase, which are different from those of the matrix, due to chemical interactions, highly affect the stress field rising around particles and the energy dissipation at the nanoscale
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2666656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 61
social impact