Tin dioxide coatings are widely applied in glasses and ceramics to improve not only optical, but also mechanical properties. In this work, we report a new method to prepare SnO2 coatings from aqueous dispersions of polymer/organotin hybrid nanoparticles. Various liquid organotin compounds were encapsulated in polymeric nanoparticles synthesized by miniemulsion polymerization. Large amounts of tetrabutyltin and bis(tributyltin) could be successfully incorporated in cross-linked and noncross-linked polystyrene nanoparticles that served as sacrificial templates for the formation of tin oxide coatings after etching with oxygen plasma or calcination. Cross-linked polystyrene particles containing bis(tributyltin)—selected for having a high boiling point—were found to be especially suited for the oxide coating formation. The content of metal in the particles was up to 12 wt %, and estimations by thermogravimetrical indicated that at least 96% of the total organotin compound was converted to SnO2. The resulting coatings were mainly identified as tetragonal SnO2 (cassiterite) by X-ray diffraction, although a coexistence of this phase with orthorhombic SnO2 was observed for samples prepared with bis(tributyltin).

Tin(IV) Oxide Coatings from Hybrid Organotin/Polymer Nanoparticles

DOLCET, PAOLO;
2011

Abstract

Tin dioxide coatings are widely applied in glasses and ceramics to improve not only optical, but also mechanical properties. In this work, we report a new method to prepare SnO2 coatings from aqueous dispersions of polymer/organotin hybrid nanoparticles. Various liquid organotin compounds were encapsulated in polymeric nanoparticles synthesized by miniemulsion polymerization. Large amounts of tetrabutyltin and bis(tributyltin) could be successfully incorporated in cross-linked and noncross-linked polystyrene nanoparticles that served as sacrificial templates for the formation of tin oxide coatings after etching with oxygen plasma or calcination. Cross-linked polystyrene particles containing bis(tributyltin)—selected for having a high boiling point—were found to be especially suited for the oxide coating formation. The content of metal in the particles was up to 12 wt %, and estimations by thermogravimetrical indicated that at least 96% of the total organotin compound was converted to SnO2. The resulting coatings were mainly identified as tetragonal SnO2 (cassiterite) by X-ray diffraction, although a coexistence of this phase with orthorhombic SnO2 was observed for samples prepared with bis(tributyltin).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2668339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact