SURMODERR is a MATLAB toolbox intended for the estimation of reliable velocity uncertainties of a non-permanent GPS station (NPS), i.e. a GPS receiver used in campaign-style measurements. The implemented method is based on the subsampling of daily coordinate time series of one or more continuous GPS stations located inside or close to the area where the NPSs are installed. The continuous time series are subsampled according to real or planned occupation tables and random errors occurring in antenna replacement on different surveys are taken into account. In order to overcome the uncertainty underestimation that typically characterizes short duration GPS time series, statistical analysis of the simulated data is performed to estimate the velocity uncertainties of this real NPS. The basic hypotheses required are: (i) the signal must be a long-term linear trend plus seasonal and colored noise for each coordinate; (ii) the standard data processing should have already been performed to provide daily data series; and (iii) if the method is applied to survey planning, the future behavior should not be significantly different from the past behavior. In order to show the strength of the approach, two case studies with real data are presented and discussed (Central Apennine and Panarea Island, Italy).
SURMODERR: A MATLAB toolbox for estimation of velocity uncertainties of a non-permanent GPS station
TEZA, GIORDANO;
2010
Abstract
SURMODERR is a MATLAB toolbox intended for the estimation of reliable velocity uncertainties of a non-permanent GPS station (NPS), i.e. a GPS receiver used in campaign-style measurements. The implemented method is based on the subsampling of daily coordinate time series of one or more continuous GPS stations located inside or close to the area where the NPSs are installed. The continuous time series are subsampled according to real or planned occupation tables and random errors occurring in antenna replacement on different surveys are taken into account. In order to overcome the uncertainty underestimation that typically characterizes short duration GPS time series, statistical analysis of the simulated data is performed to estimate the velocity uncertainties of this real NPS. The basic hypotheses required are: (i) the signal must be a long-term linear trend plus seasonal and colored noise for each coordinate; (ii) the standard data processing should have already been performed to provide daily data series; and (iii) if the method is applied to survey planning, the future behavior should not be significantly different from the past behavior. In order to show the strength of the approach, two case studies with real data are presented and discussed (Central Apennine and Panarea Island, Italy).Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.