The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and Pdot = 6.61(4)x10^{-12} s /s), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc/ cm^3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

A STRONGLY MAGNETIZED PULSAR WITHIN THE GRASP OF THE MILKY WAY'S SUPERMASSIVE BLACK HOLE

TUROLLA, ROBERTO;
2013

Abstract

The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and Pdot = 6.61(4)x10^{-12} s /s), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc/ cm^3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2681654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 95
social impact