Single-photon sources represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper, in order to compare the effectiveness of different designs, we introduce a single-photon source performance index, based on the maximum probability of generating a single photon that still guarantees a given signal-to-noise ratio. We then investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single-photon sources. The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.

Asymmetric architecture for heralded single-photon sources

MAZZARELLA, LUCA;TICOZZI, FRANCESCO;VALLONE, GIUSEPPE;VILLORESI, PAOLO
2013

Abstract

Single-photon sources represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper, in order to compare the effectiveness of different designs, we introduce a single-photon source performance index, based on the maximum probability of generating a single photon that still guarantees a given signal-to-noise ratio. We then investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single-photon sources. The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2683858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact