In both monkeys and humans, reaching-related sensorimotor transformations involve the activation of a wide fronto-parietal network. Recent neurophysiological evidence suggests that some components of this network host not only neurons encoding the direction of arm reaching movements, but also neurons whose involvement is modulated by the intrinsic features of an object (e.g. size and shape). To date, it has yet to be investigated whether a similar modulation is evident in the human reaching-related areas. To fill this gap, we asked participants to reach towards either a small or a large object while kinematic and electroencephalographic signals were recorded. Behavioral results showed that the precision requirements were taken into account and the kinematics of reaching was modulated depending on the object size. Similarly, reaching-related neural activity at the level of the posterior parietal and premotor cortices was modulated by the level of accuracy determined by object size. We therefore conclude that object size is engaged in the neural computations for reach planning and execution, consistent with the results from physiological studies in non-human primates.

Object size modulates fronto-parietal activity during reaching movements

TARANTINO, VINCENZA;DE SANCTIS, TERESA;STRAULINO, ELISA;BEGLIOMINI, CHIARA;CASTIELLO, UMBERTO
2014

Abstract

In both monkeys and humans, reaching-related sensorimotor transformations involve the activation of a wide fronto-parietal network. Recent neurophysiological evidence suggests that some components of this network host not only neurons encoding the direction of arm reaching movements, but also neurons whose involvement is modulated by the intrinsic features of an object (e.g. size and shape). To date, it has yet to be investigated whether a similar modulation is evident in the human reaching-related areas. To fill this gap, we asked participants to reach towards either a small or a large object while kinematic and electroencephalographic signals were recorded. Behavioral results showed that the precision requirements were taken into account and the kinematics of reaching was modulated depending on the object size. Similarly, reaching-related neural activity at the level of the posterior parietal and premotor cortices was modulated by the level of accuracy determined by object size. We therefore conclude that object size is engaged in the neural computations for reach planning and execution, consistent with the results from physiological studies in non-human primates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2743878
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact