LaCo0.7Cu0.3O3 perovskite powder was prepared by means of the citrate method and treated at different temperatures from 873 to 1323 K. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD, O2-TPD), and scanning electron microscopy (SEM); the BET specific surface area was also determined. The reactivity of the perovskite with methanol and ethanol was investigated under steam reforming and oxidative steam reforming conditions and correlated to its chemical and structural properties. Different oxygen/alcohol molar ratios were used to study the influence of oxygen on catalytic activity and products distribution. LaCo0.7Cu0.3O3 begins to be active in alcohol steam reforming at about 523 K. The catalyst calcined at 873K shows the higher conversion in methanol steam reforming. Ethanol steam reforming conversion, in contrast, is rather low and not significantly affected by the catalyst calcination temperature. The conversions increase when oxygen is present reaching 93% for methanol and 78% for ethanol. Beside the steam reforming and oxidative steam reforming, other secondary reaction paths occur: methanol decomposition and ethanol dehydrogenation.

Steam reforming and oxidative steam reforming of methanol and ethanol: The behaviour of LaCo0.7Cu0.3O3

GLISENTI, ANTONELLA;
2013

Abstract

LaCo0.7Cu0.3O3 perovskite powder was prepared by means of the citrate method and treated at different temperatures from 873 to 1323 K. The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD, O2-TPD), and scanning electron microscopy (SEM); the BET specific surface area was also determined. The reactivity of the perovskite with methanol and ethanol was investigated under steam reforming and oxidative steam reforming conditions and correlated to its chemical and structural properties. Different oxygen/alcohol molar ratios were used to study the influence of oxygen on catalytic activity and products distribution. LaCo0.7Cu0.3O3 begins to be active in alcohol steam reforming at about 523 K. The catalyst calcined at 873K shows the higher conversion in methanol steam reforming. Ethanol steam reforming conversion, in contrast, is rather low and not significantly affected by the catalyst calcination temperature. The conversions increase when oxygen is present reaching 93% for methanol and 78% for ethanol. Beside the steam reforming and oxidative steam reforming, other secondary reaction paths occur: methanol decomposition and ethanol dehydrogenation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2806279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact