The DFT/vdW-QHO-WF method, recently developed to include the van der Waals (vdW) interactions in approximated Density Functional Theory (DFT) by combining the Quantum Harmonic Oscillator model with the Maximally Localized Wannier Function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H$_2$, H$_2$O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal Generalized Gradient Approximation (GGA) approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

SILVESTRELLI, PIER LUIGI;AMBROSETTI, ALBERTO
2014

Abstract

The DFT/vdW-QHO-WF method, recently developed to include the van der Waals (vdW) interactions in approximated Density Functional Theory (DFT) by combining the Quantum Harmonic Oscillator model with the Maximally Localized Wannier Function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H$_2$, H$_2$O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal Generalized Gradient Approximation (GGA) approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2806734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 62
social impact