The GERDA experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0 nu beta beta) decay of Ge-76 using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched Ge-76 fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV gamma rays from Tl-208 decays as well as two-neutrino double beta (2 nu beta beta) decays of Ge-76 are used as proxies for 0 nu beta beta decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92 +/- 0.02 of signal-like events while about 80 % of the background events at Q(beta beta) = 2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 nu beta beta decay. It retains 90 % of DEP events and rejects about half of the events around Q(beta beta). The 2 nu beta beta events have an efficiency of 0.85 +/- 0.02 and the one for 0 nu beta beta decays is estimated to be 0.90(-0.09)(+ 0.05) . A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 nu beta beta decays.

Pulse shape discrimination for GERDA Phase I data

BRUGNERA, RICCARDO;GARFAGNINI, ALBERTO;HEMMER, SABINE ELISABETH;SADA, CINZIA;VON STURM ZU VEHLINGEN, KATHARINA CACILIE;
2013

Abstract

The GERDA experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0 nu beta beta) decay of Ge-76 using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched Ge-76 fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV gamma rays from Tl-208 decays as well as two-neutrino double beta (2 nu beta beta) decays of Ge-76 are used as proxies for 0 nu beta beta decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92 +/- 0.02 of signal-like events while about 80 % of the background events at Q(beta beta) = 2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 nu beta beta decay. It retains 90 % of DEP events and rejects about half of the events around Q(beta beta). The 2 nu beta beta events have an efficiency of 0.85 +/- 0.02 and the one for 0 nu beta beta decays is estimated to be 0.90(-0.09)(+ 0.05) . A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2 nu beta beta decays.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2812480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 94
  • ???jsp.display-item.citation.isi??? 76
  • OpenAlex ND
social impact