The ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus in the brackish aquatic environment was extensively investigated in this study. By conducting laboratory experiments under natural setting conditions, it was shown that V. splendidus LGP32 strain generally exhibits longer persistence in both seawater and sediment than V. aestuarianus 01/32 strain. Both strains maintained viability and culturability for longer times in the sediment, suggesting that this compartment may represent a suitable niche for their persistence in the environment. In addition, both strains attached to chitin particles and copepods, the efficiency of attachment being higher in V. splendidus than in V. aestuarianus. Similarly, LGP32 strain showed a greater capability to form biofilm on poly-vinyl chloride (PVC) surfaces than 01/32 strain. LGP32 and 01/32 strains were also capable of entering a viable but non-culturable state after extended incubation at 5°C, a condition commonly found during cold season in the aquatic brackish environment. These results are consistent with field data collected during a 2-year sampling campaign in the northern Adriatic Sea and provide background information on the mechanisms promoting V. splendidus and V. aestuarianus persistence in coastal water, thus contributing to a better understanding of the epidemiology of the associated diseases.

Aquatic Ecology of the Oyster Pathogens Vibrio splendidus and Vibrio aestuarianus

VENIER, PAOLA;
2015

Abstract

The ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus in the brackish aquatic environment was extensively investigated in this study. By conducting laboratory experiments under natural setting conditions, it was shown that V. splendidus LGP32 strain generally exhibits longer persistence in both seawater and sediment than V. aestuarianus 01/32 strain. Both strains maintained viability and culturability for longer times in the sediment, suggesting that this compartment may represent a suitable niche for their persistence in the environment. In addition, both strains attached to chitin particles and copepods, the efficiency of attachment being higher in V. splendidus than in V. aestuarianus. Similarly, LGP32 strain showed a greater capability to form biofilm on poly-vinyl chloride (PVC) surfaces than 01/32 strain. LGP32 and 01/32 strains were also capable of entering a viable but non-culturable state after extended incubation at 5°C, a condition commonly found during cold season in the aquatic brackish environment. These results are consistent with field data collected during a 2-year sampling campaign in the northern Adriatic Sea and provide background information on the mechanisms promoting V. splendidus and V. aestuarianus persistence in coastal water, thus contributing to a better understanding of the epidemiology of the associated diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2812690
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 59
social impact