We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium “effective temperature.” Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by adenosine triphosphate hydrolysis illustrate these points.

Nonequilibrium Fluctuation-Dissipation Theorem and Heat Production

BAIESI, MARCO;
2014

Abstract

We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium “effective temperature.” Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by adenosine triphosphate hydrolysis illustrate these points.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2812883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact