A large body of experimental evidence shows that animals as diverse as mammals, birds, and fish are capable of processing numerical information. Considerable differences have been reported in some cases among species and a wide debate currently surrounds the issue of whether all vertebrates share the same numerical systems or not. Part of the problem is due to the fact that these studies often use different methods, a circumstance that potentially introduces confounding factors in a comparative analysis. In most studies, two main methodological approaches have been used: spontaneous choice tests and training procedures. The former approach consists of presenting to the subjects two groups of biologically-relevant stimuli (e.g., food items or social companions) differing in numerosity with the assumption that if they are able to discriminate between the two quantities, they are expected to spontaneously select the larger/smaller quantity. In the latter approach, subjects undergo extensive training in which some neutral stimuli (e.g., a quantity of dots) are associated with a reward and the capacity to learn a numerical rule is taken as evidence of numerical abilities. We review the literature on this topic, highlighting the relevance, and potential weaknesses in controlling confounding factors obtained with either approach.

Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals

AGRILLO, CHRISTIAN;BISAZZA, ANGELO
2014

Abstract

A large body of experimental evidence shows that animals as diverse as mammals, birds, and fish are capable of processing numerical information. Considerable differences have been reported in some cases among species and a wide debate currently surrounds the issue of whether all vertebrates share the same numerical systems or not. Part of the problem is due to the fact that these studies often use different methods, a circumstance that potentially introduces confounding factors in a comparative analysis. In most studies, two main methodological approaches have been used: spontaneous choice tests and training procedures. The former approach consists of presenting to the subjects two groups of biologically-relevant stimuli (e.g., food items or social companions) differing in numerosity with the assumption that if they are able to discriminate between the two quantities, they are expected to spontaneously select the larger/smaller quantity. In the latter approach, subjects undergo extensive training in which some neutral stimuli (e.g., a quantity of dots) are associated with a reward and the capacity to learn a numerical rule is taken as evidence of numerical abilities. We review the literature on this topic, highlighting the relevance, and potential weaknesses in controlling confounding factors obtained with either approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2830703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 91
social impact