For a finite group G let σ(G) (the “sum” of G) be the least number of proper subgroups of G whose set-theoretical union is equal to G, and σ(G) = ∞ if G is cyclic. We say that a group G is σ-elementary if for every non-trivial normal subgroup N of G we have σ(G) < σ(G/N). In this article we produce the list of all the σ-elementary groups of sum up to 25. We also show that σ(Aut(PSL(2, 8))) = 29.

FINITE GROUPS THAT ARE THE UNION OF AT MOST 25 PROPER SUBGROUPS

GARONZI, MARTINO
2013

Abstract

For a finite group G let σ(G) (the “sum” of G) be the least number of proper subgroups of G whose set-theoretical union is equal to G, and σ(G) = ∞ if G is cyclic. We say that a group G is σ-elementary if for every non-trivial normal subgroup N of G we have σ(G) < σ(G/N). In this article we produce the list of all the σ-elementary groups of sum up to 25. We also show that σ(Aut(PSL(2, 8))) = 29.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2835951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact