In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications. The paper shows how this high level programming language, together with its target hardware platforms, including Compact RIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are presented.

Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGAc Hardware-Software Toolset

CALDOGNETTO, TOMMASO;BUSO, SIMONE;MATTAVELLI, PAOLO
2013

Abstract

In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications. The paper shows how this high level programming language, together with its target hardware platforms, including Compact RIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are presented.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2836209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact