Algorithm 886: Padua2D---Lagrange Interpolation at Padua Points on Bivariate Domains We present a stable and efficient Fortran implementation of polynomial interpolation at the Padua points on the square [ − 1,1]2. These points are unisolvent and their Lebesgue constant has minimal order of growth (log square of the degree). The algorithm is based on the representation of the Lagrange interpolation formula in a suitable orthogonal basis, and takes advantage of a new matrix formulation together with the machine-specific optimized BLAS subroutine for the matrix-matrix product. Extension to interpolation on rectangles, triangles and ellipses is also described (Source: http://dl.acm.org/)
Padua2D
DE MARCHI, STEFANO;SOMMARIVA, ALVISE;
2008
Abstract
Algorithm 886: Padua2D---Lagrange Interpolation at Padua Points on Bivariate Domains We present a stable and efficient Fortran implementation of polynomial interpolation at the Padua points on the square [ − 1,1]2. These points are unisolvent and their Lebesgue constant has minimal order of growth (log square of the degree). The algorithm is based on the representation of the Lagrange interpolation formula in a suitable orthogonal basis, and takes advantage of a new matrix formulation together with the machine-specific optimized BLAS subroutine for the matrix-matrix product. Extension to interpolation on rectangles, triangles and ellipses is also described (Source: http://dl.acm.org/)Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.