In this work, an innovative technology for the rapid heating and cooling of injection moulds has been developed and used to analyse the effect rapid variations of the mould temperature on the improvement of mouldings' appearance in terms of gloss. The obtained experimental results show that by maintaining an elevated mould surface temperature, the polymer melt is prevented from solidifying prematurely in the filling and packing stage, thereby improving the replication of the mirror-finished cavity surface. Furthermore, the mould cavity heating combined with the rapid cooling of the moulded part significantly contributes to contrasting the development of surface defects, such as weld line marks.

Influence of Rapid Mould Temperature Variation on the Appearance of Injection-Moulded Parts

LUCCHETTA, GIOVANNI;
2013

Abstract

In this work, an innovative technology for the rapid heating and cooling of injection moulds has been developed and used to analyse the effect rapid variations of the mould temperature on the improvement of mouldings' appearance in terms of gloss. The obtained experimental results show that by maintaining an elevated mould surface temperature, the polymer melt is prevented from solidifying prematurely in the filling and packing stage, thereby improving the replication of the mirror-finished cavity surface. Furthermore, the mould cavity heating combined with the rapid cooling of the moulded part significantly contributes to contrasting the development of surface defects, such as weld line marks.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2838461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
  • OpenAlex ND
social impact