Superconducting coils are one of the key technical solutions used for generation of high magnetic field in modern tokamaks. Nb3Sn superconductivity depends not only on temperature and magnetic field as e.g. NbTi, but also on the strain state of the strands inside the conductor. It is hence very important to be able to predict the mechanical deformations due to manufacturing processes and operating conditions. The conductors for ITER, the International Thermonuclear Experimental Reactor currently under construction, have a complex structure that makes analytical estimations of stiffness applicable only for the first cabling stages. In this work, a wide range of numerical simulations has been performed, by using several types of finite element models. This paper shows some analytical estimations for stretching and twisting and compares them with the numerical results of the different models. Some comparisons with experimental tests are also presented. Furthermore, it is shown that direct finite element analyses are compulsory for higher cable stages, but need the knowledge of the initial configuration as precise as possible for meaningful simulations. This problem is also addressed in this paper.

Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration

BOSO, DANIELA;SCHREFLER, BERNHARD
2010

Abstract

Superconducting coils are one of the key technical solutions used for generation of high magnetic field in modern tokamaks. Nb3Sn superconductivity depends not only on temperature and magnetic field as e.g. NbTi, but also on the strain state of the strands inside the conductor. It is hence very important to be able to predict the mechanical deformations due to manufacturing processes and operating conditions. The conductors for ITER, the International Thermonuclear Experimental Reactor currently under construction, have a complex structure that makes analytical estimations of stiffness applicable only for the first cabling stages. In this work, a wide range of numerical simulations has been performed, by using several types of finite element models. This paper shows some analytical estimations for stretching and twisting and compares them with the numerical results of the different models. Some comparisons with experimental tests are also presented. Furthermore, it is shown that direct finite element analyses are compulsory for higher cable stages, but need the knowledge of the initial configuration as precise as possible for meaningful simulations. This problem is also addressed in this paper.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2969580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact