Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M ⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M ⊕ and an updated radius of R ⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm-3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M ⊕ and radius of R ⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods

The Kepler-10 Planetary System Revisited by HARPS-N: A Hot Rocky World and a Solid Neptune-Mass Planet

MALAVOLTA, LUCA;NASCIMBENI, VALERIO;PIOTTO, GIAMPAOLO;
2014

Abstract

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only good enough to set an upper limit of 20 M ⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M ⊕ and an updated radius of R ⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm-3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M ⊕ and radius of R ⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm-3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3030513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 136
social impact