The present study designed and developed blood vessel substitutes (BVSs) composed of polyvinyl alcohol (PVA) cryogels. The in vitro results demonstrated that the coating of the polymer with lyophilized decellularized vascular matrix (DVM) greatly enhanced the adhesion of human umbilical vein endothelial cells (HUVECs). However, when PVA̸DVM BVSs were implanted into the abdominal aorta of Sprague‑Dawley rats, DVM was identified as a highly thrombogenic surface resulting in the mortality of all animals 3‑4 days after surgery. By contrast, all rats implanted with PVA survived and were sacrificed after 12 months. The luminal surface of the explanted grafts was completely covered by endothelial cells and the inner diameter was similar to that of the original vessel. In conclusion, the present study indicated that PVA may be considered as a promising biomaterial for the fabrication of artificial vessels.

Evaluation of vascular grafts based on polyvinyl alcohol cryogels

CONCONI, MARIA TERESA;DI LIDDO, ROSA;DALZOPPO, DANIELE;PARNIGOTTO, PIER PAOLO;GRANDI, CLAUDIO
2014

Abstract

The present study designed and developed blood vessel substitutes (BVSs) composed of polyvinyl alcohol (PVA) cryogels. The in vitro results demonstrated that the coating of the polymer with lyophilized decellularized vascular matrix (DVM) greatly enhanced the adhesion of human umbilical vein endothelial cells (HUVECs). However, when PVA̸DVM BVSs were implanted into the abdominal aorta of Sprague‑Dawley rats, DVM was identified as a highly thrombogenic surface resulting in the mortality of all animals 3‑4 days after surgery. By contrast, all rats implanted with PVA survived and were sacrificed after 12 months. The luminal surface of the explanted grafts was completely covered by endothelial cells and the inner diameter was similar to that of the original vessel. In conclusion, the present study indicated that PVA may be considered as a promising biomaterial for the fabrication of artificial vessels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3032129
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact