We analyse the feasibility of using iron-doping in lithium niobate in order to stabilize and permanently fix light-induced integrated structures. General 3D optical interconnections were realized in bulk lithium niobate crystals by means of soliton waveguides exploiting the enhanced photorefractive properties obtainable using specific iron doping. We report an enhancement of the photorefractive properties in doped crystals that can be considered for permanently fixing the integrated circuits. This work opens new directions for realizing permanent self-assembled and self-aligned integrated electro-optic devices and photonic circuits.

Influence of iron doping on spatial soliton formation and fixing in lithium niobate crystals

ZALTRON, ANNAMARIA;N. Argiolas;SADA, CINZIA
2014

Abstract

We analyse the feasibility of using iron-doping in lithium niobate in order to stabilize and permanently fix light-induced integrated structures. General 3D optical interconnections were realized in bulk lithium niobate crystals by means of soliton waveguides exploiting the enhanced photorefractive properties obtainable using specific iron doping. We report an enhancement of the photorefractive properties in doped crystals that can be considered for permanently fixing the integrated circuits. This work opens new directions for realizing permanent self-assembled and self-aligned integrated electro-optic devices and photonic circuits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3033314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact