R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP 100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly af- fects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation

Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants

DEL COL, DAVIDE;BORTOLATO, MATTEO;AZZOLIN, MARCO;BORTOLIN, STEFANO
2015

Abstract

R1234ze(E), trans-1, 3, 3, 3-tetrafluoropropene, is a fluorinated propene isomer which may be a substitute of R134a for refrigeration applications. R1234ze(E) has a much lower GWP 100-years than that of R134a. In this paper, the local heat transfer coefficient during condensation of R1234ze(E) is investigated in a single minichannel, horizontally arranged, with hydraulic diameter equal to 0.96 mm. Since the saturation temperature drop directly af- fects the heat transfer rate, the pressure drop during adiabatic two phase flow of R1234ze(E) is also measured. Predictive models are assessed both for condensation heat transfer and pressure drop. A comparative analysis is carried out among several fluids (R1234ze(E), R32, R134a and R1234yf) starting from experimental data collected at the same conditions and using the Performance Evaluation Criteria (PEC) named Penalty Factor (PF) and Total Temperature Penalization (TTP) to rank the tested refrigerants in forced convective condensation
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3035507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 84
social impact