We analyze the fermionic wigging of 1/2-BPS (electric) extremal black hole attractors in N=2, D=5 ungauged Maxwell-Einstein supergravity theories, by exploiting anti-Killing spinors supersymmetry transformations. Regardless of the specific data of the real special geometry of the manifold defining the scalars of the vector multiplets, and differently from the D=4 case, we find that there are no corrections for the near--horizon attractor value of the scalar fields; an analogous result also holds for 1/2-BPS (magnetic) extremal black string. Thus, the attractor mechanism receives no fermionic corrections in D=5 (at least in the BPS sector).

No fermionic wigs for BPS attractors in 5 dimensions

GENTILE, LORENZO GIULIO CELSO;
2014

Abstract

We analyze the fermionic wigging of 1/2-BPS (electric) extremal black hole attractors in N=2, D=5 ungauged Maxwell-Einstein supergravity theories, by exploiting anti-Killing spinors supersymmetry transformations. Regardless of the specific data of the real special geometry of the manifold defining the scalars of the vector multiplets, and differently from the D=4 case, we find that there are no corrections for the near--horizon attractor value of the scalar fields; an analogous result also holds for 1/2-BPS (magnetic) extremal black string. Thus, the attractor mechanism receives no fermionic corrections in D=5 (at least in the BPS sector).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3086701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact