We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to a scala conservation law with quadratic flux function and bounded measurable source term.
Titolo: | Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to a scala conservation law with quadratic flux function and bounded measurable source term. |
Handle: | http://hdl.handle.net/11577/3106504 |
Appare nelle tipologie: | 01.01 - Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.