We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case.
Titolo: | Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1 |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case. |
Handle: | http://hdl.handle.net/11577/3141126 |
Appare nelle tipologie: | 01.01 - Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
LZ-rev2.pdf | ultimo preprint | Post-print | Accesso gratuito | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.