If T is an algebraic torus defined over a discretely valued field K with perfect residue field k, we relate the K-cohomology of T to the k-cohomology of certain objects associated to T. When k has cohomological dimension ≤ 1, our results have a particularly simple form and yield, more generally, isomorphisms between Borovoi’s abelian K-cohomology of a reductive group G over K and the k-cohomology of a certain quotient of the algebraic fundamental group of G.
On the cohomology of tori over local fields with perfect residue field
BERTAPELLE, ALESSANDRA;
2015
Abstract
If T is an algebraic torus defined over a discretely valued field K with perfect residue field k, we relate the K-cohomology of T to the k-cohomology of certain objects associated to T. When k has cohomological dimension ≤ 1, our results have a particularly simple form and yield, more generally, isomorphisms between Borovoi’s abelian K-cohomology of a reductive group G over K and the k-cohomology of a certain quotient of the algebraic fundamental group of G.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.