We study noncommutative continuant polynomials via a new leapfrog construc- tion. This needs the introduction of new indeterminates and leads to generalizations of Fibonacci polynomials, Lucas polynomials and other families of polynomials. We relate these polynomials to various topics such as quiver algebras and tilings. Finally, we use permanents to give a broad perspective on the subject.

Leapfrog constructions: From continuant polynomials to permanents of matrices

FACCHINI, ALBERTO;
2015

Abstract

We study noncommutative continuant polynomials via a new leapfrog construc- tion. This needs the introduction of new indeterminates and leads to generalizations of Fibonacci polynomials, Lucas polynomials and other families of polynomials. We relate these polynomials to various topics such as quiver algebras and tilings. Finally, we use permanents to give a broad perspective on the subject.
File in questo prodotto:
File Dimensione Formato  
4637-PDF file-12936-2-10-20150216.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 322.82 kB
Formato Adobe PDF
322.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3146544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact