We study the blow-up of H-perimeter minimizing sets in the Heisenberg group <sup>Hn</sup>, n≥2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.
Minimal surfaces and harmonic functions in the Heisenberg group
MONTI, ROBERTO
2015
Abstract
We study the blow-up of H-perimeter minimizing sets in the Heisenberg group Hn, n≥2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.