A potential drawback, not yet investigated, of low application temperatures of asphalt mixes could be a reduced interface shear strength. Such low temperatures could be due to improper construction as well as to the use of warm mix asphalt (WMA) technology. In this sense, this paper illustrates an experimental laboratory research aimed at characterizing interface shear properties of double-layered asphalt systems. The upper layer of the specimens (WMA or hot mix asphalt control mix) was mixed and compacted at different temperatures in order to simulate different application conditions. A plain bitumen and a polymer modified binder were used for the asphalt mixes whereas an organic (wax) additive was selected as warm modifier. Experimental data were also compared with the stress field of a typical flexible pavement calculated through a layered elastic theory (LET) model. The research study mainly showed that interface shear strength sensibly decreases for low application temperatures of the upper layer (below 140 C) regardless of bitumen type and presence of the warm additive. However, the use of polymer modified bitumen as binder for the upper layer asphalt concrete leads to noticeably higher interface shear strength at any test temperature reducing the risk of delamination.

Laboratory evaluation of the effect of low-temperature application of warm-mix asphalts on interface shear strength

PASQUINI, EMILIANO;GIACOMELLO, GIOVANNI;PASETTO, MARCO;
2015

Abstract

A potential drawback, not yet investigated, of low application temperatures of asphalt mixes could be a reduced interface shear strength. Such low temperatures could be due to improper construction as well as to the use of warm mix asphalt (WMA) technology. In this sense, this paper illustrates an experimental laboratory research aimed at characterizing interface shear properties of double-layered asphalt systems. The upper layer of the specimens (WMA or hot mix asphalt control mix) was mixed and compacted at different temperatures in order to simulate different application conditions. A plain bitumen and a polymer modified binder were used for the asphalt mixes whereas an organic (wax) additive was selected as warm modifier. Experimental data were also compared with the stress field of a typical flexible pavement calculated through a layered elastic theory (LET) model. The research study mainly showed that interface shear strength sensibly decreases for low application temperatures of the upper layer (below 140 C) regardless of bitumen type and presence of the warm additive. However, the use of polymer modified bitumen as binder for the upper layer asphalt concrete leads to noticeably higher interface shear strength at any test temperature reducing the risk of delamination.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3157148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact