With less than two decades of activity, research on melt inclusions (MI) in crystals from rocks that have undergone crustal anatexis – migmatites and granulites – is a recent addition to crustal petrology and geochemistry. Studies on this subject started with glassy inclusions in anatectic crustal enclaves in lavas, and then progressed to regionally metamorphosed and partially melted crustal rocks, where melt inclusions are normally crystallized into a cryptocrystalline aggregate (nanogranitoid). Since the first paper on melt inclusions in the granulites of the Kerala Khondalite Belt in 2009, reported and studied occurrences are already a few tens. Melt inclusions in migmatites and granulites show many analogieswith theirmore common and long studied counterparts in igneous rocks, but also display very important differences and peculiarities,which are the subject of this review. Microstructurally, melt inclusions in anatectic rocks are small, commonly 10 μm in diameter, and their main mineral host is peritectic garnet, although several other hosts have been observed. Inclusion contents vary from glass in enclaves that were cooled very rapidly from supersolidus temperatures, to completely crystallized material in slowly cooled regional migmatites. The chemical composition of the inclusions can be analyzed combining several techniques (SEM, EMP, NanoSIMS, LA–ICP–MS), but in the case of crystallized inclusions the experimental remelting under confining pressure in a piston cylinder is a prerequisite. The melt is generally granitic and peraluminous, although granodioritic to trondhjemitic compositions have also been found. Being mostly primary in origin, inclusions attest for the growth of their peritectic host in the presence of melt. As a consequence, the inclusions have the unique ability of preserving information on the composition of primary anatectic crustal melts, before they undergo any of the common following changes in their way to produce crustal magmas. For these peculiar features, melt inclusions in migmatites and granulites, largely overlooked so far, have the potential to become a fundamental tool for the study of crustal melting, crustal differentiation, and even the generation of the continental crust.

What can we learn from melt inclusions in migmatites and granulites?

CESARE, BERNARDO;ACOSTA VIGIL, ANTONIO;BARTOLI, OMAR;FERRERO, SILVIO
2015

Abstract

With less than two decades of activity, research on melt inclusions (MI) in crystals from rocks that have undergone crustal anatexis – migmatites and granulites – is a recent addition to crustal petrology and geochemistry. Studies on this subject started with glassy inclusions in anatectic crustal enclaves in lavas, and then progressed to regionally metamorphosed and partially melted crustal rocks, where melt inclusions are normally crystallized into a cryptocrystalline aggregate (nanogranitoid). Since the first paper on melt inclusions in the granulites of the Kerala Khondalite Belt in 2009, reported and studied occurrences are already a few tens. Melt inclusions in migmatites and granulites show many analogieswith theirmore common and long studied counterparts in igneous rocks, but also display very important differences and peculiarities,which are the subject of this review. Microstructurally, melt inclusions in anatectic rocks are small, commonly 10 μm in diameter, and their main mineral host is peritectic garnet, although several other hosts have been observed. Inclusion contents vary from glass in enclaves that were cooled very rapidly from supersolidus temperatures, to completely crystallized material in slowly cooled regional migmatites. The chemical composition of the inclusions can be analyzed combining several techniques (SEM, EMP, NanoSIMS, LA–ICP–MS), but in the case of crystallized inclusions the experimental remelting under confining pressure in a piston cylinder is a prerequisite. The melt is generally granitic and peraluminous, although granodioritic to trondhjemitic compositions have also been found. Being mostly primary in origin, inclusions attest for the growth of their peritectic host in the presence of melt. As a consequence, the inclusions have the unique ability of preserving information on the composition of primary anatectic crustal melts, before they undergo any of the common following changes in their way to produce crustal magmas. For these peculiar features, melt inclusions in migmatites and granulites, largely overlooked so far, have the potential to become a fundamental tool for the study of crustal melting, crustal differentiation, and even the generation of the continental crust.
File in questo prodotto:
File Dimensione Formato  
Cesareetal2015.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3169674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 85
social impact