Diagnostic tests for veterinary surveillance programs should be efficient, easy to use and, possibly, economical. In this context, classic Enzyme linked ImmunoSorbent Assay (ELISA) remains the most common analytical platform employed for serological analyses. The analysis of pooled samples instead of individual ones is a common procedure that permits to certify, with one single test, entire herds as "disease-free". However, diagnostic tests for pooled samples need to be particularly sensitive, especially when the levels of disease markers are low, as in the case of anti-BoHV1 antibodies in milk as markers of Infectious Bovine Rhinotracheitis (IBR) disease. The avidin-nucleic-acid-nanoassembly (ANANAS) is a novel kind of signal amplification platform for immunodiagnostics based on colloidal poly-avidin nanoparticles that, using model analytes, was shown to strongly increase ELISA test performance as compared to monomeric avidin. Here, for the first time, we applied the ANANAS reagent integration in a real diagnostic context. The monoclonal 1G10 anti-bovine IgG1 antibody was biotinylated and integrated with the ANANAS reagents for indirect IBR diagnosis from pooled milk mimicking tank samples from herds with IBR prevalence between 1 to 8%. The sensitivity and specificity of the ANANAS integrated method was compared to that of a classic test based on the same 1G10 antibody directly linked to horseradish peroxidase, and a commercial IDEXX kit recently introduced in the market. ANANAS integration increased by 5-fold the sensitivity of the 1G10 mAb-based conventional ELISA without loosing specificity. When compared to the commercial kit, the 1G10-ANANAS integrated method was capable to detect the presence of anti-BHV1 antibodies from bulk milk of gE antibody positive animals with 2-fold higher sensitivity and similar specificity. The results demonstrate the potentials of this new amplification technology, which permits improving current classic ELISA sensitivity limits without the need for new hardware investments.

A New ELISA Using the ANANAS Technology Showing High Sensitivity to diagnose the Bovine Rhinotracheitis from Individual Sera to Pooled Milk

CASARIN, ELISABETTA;FACCHIN, SONIA;REALDON, NICOLA;MORPURGO, MARGHERITA;
2016

Abstract

Diagnostic tests for veterinary surveillance programs should be efficient, easy to use and, possibly, economical. In this context, classic Enzyme linked ImmunoSorbent Assay (ELISA) remains the most common analytical platform employed for serological analyses. The analysis of pooled samples instead of individual ones is a common procedure that permits to certify, with one single test, entire herds as "disease-free". However, diagnostic tests for pooled samples need to be particularly sensitive, especially when the levels of disease markers are low, as in the case of anti-BoHV1 antibodies in milk as markers of Infectious Bovine Rhinotracheitis (IBR) disease. The avidin-nucleic-acid-nanoassembly (ANANAS) is a novel kind of signal amplification platform for immunodiagnostics based on colloidal poly-avidin nanoparticles that, using model analytes, was shown to strongly increase ELISA test performance as compared to monomeric avidin. Here, for the first time, we applied the ANANAS reagent integration in a real diagnostic context. The monoclonal 1G10 anti-bovine IgG1 antibody was biotinylated and integrated with the ANANAS reagents for indirect IBR diagnosis from pooled milk mimicking tank samples from herds with IBR prevalence between 1 to 8%. The sensitivity and specificity of the ANANAS integrated method was compared to that of a classic test based on the same 1G10 antibody directly linked to horseradish peroxidase, and a commercial IDEXX kit recently introduced in the market. ANANAS integration increased by 5-fold the sensitivity of the 1G10 mAb-based conventional ELISA without loosing specificity. When compared to the commercial kit, the 1G10-ANANAS integrated method was capable to detect the presence of anti-BHV1 antibodies from bulk milk of gE antibody positive animals with 2-fold higher sensitivity and similar specificity. The results demonstrate the potentials of this new amplification technology, which permits improving current classic ELISA sensitivity limits without the need for new hardware investments.
2016
File in questo prodotto:
File Dimensione Formato  
Casarin et al 2016 PLOS One journal.pone.0145912.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3174394
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact