We used dark field spectroscopy to monitor the dissociation of hydrogen on single gold nanoparticles embedded in metal oxide supports. Individual gold nanorods were monitored in real time to reveal the peak position, the full width at half-maximum, and the relative intensity of the surface plasmon resonances during repeated N2-H2-N2 and air-H2-air cycles. Shifts in the spectra are shown to be due to changes in electron density and not to refractive index shifts in the environment. We demonstrate that hydrogen does not dissociate on gold nanorods (13 nm - 40 nm) at room temperature when in contact with silica and that electrons or hydrogen atoms migrate from Pt nanoparticles to Au nanoparticles through the supporting metal oxide at room temperature. However, this spillover mechanism only occurs for semiconducting oxides (anatase TiO2 and ZnO) and does not occur for Au and Pt nanoparticles embedded in silica. Finally, we show that hydrogen does dissociate directly on anatase surfaces at room temperature during air-H2-air cycles. Our results show that hydrogen spillover, surface dissociation of reactants, and surface migration of chemical intermediates can be detected and monitored in real time at the single particle level.

Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study

CITTADINI, MICHELA;MARTUCCI, ALESSANDRO;
2015

Abstract

We used dark field spectroscopy to monitor the dissociation of hydrogen on single gold nanoparticles embedded in metal oxide supports. Individual gold nanorods were monitored in real time to reveal the peak position, the full width at half-maximum, and the relative intensity of the surface plasmon resonances during repeated N2-H2-N2 and air-H2-air cycles. Shifts in the spectra are shown to be due to changes in electron density and not to refractive index shifts in the environment. We demonstrate that hydrogen does not dissociate on gold nanorods (13 nm - 40 nm) at room temperature when in contact with silica and that electrons or hydrogen atoms migrate from Pt nanoparticles to Au nanoparticles through the supporting metal oxide at room temperature. However, this spillover mechanism only occurs for semiconducting oxides (anatase TiO2 and ZnO) and does not occur for Au and Pt nanoparticles embedded in silica. Finally, we show that hydrogen does dissociate directly on anatase surfaces at room temperature during air-H2-air cycles. Our results show that hydrogen spillover, surface dissociation of reactants, and surface migration of chemical intermediates can be detected and monitored in real time at the single particle level.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3176888
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 57
social impact