It has been hypothesized that cerebral lateralization can significantly enhance cognition and that this was one of the primary selective forces shaping its wide-spread evolution amongst vertebrate taxa. Here, we tested this hypothesis by examining the link between cerebral lateralization and numerical discrimination. Guppies, Poecilia reticulata, were sorted into left, right and non-lateralized groups using a standard mirror test and their numerical discrimination abilities tested in both natural shoal choice and abstract contexts. Our results show that strongly lateralized guppies have enhanced numerical abilities compared to non-lateralized guppies irrespective of context. These data provide further credence to the notion that cerebral lateralization can enhance cognitive efficiency
Laterality enhances numerical skills in the guppy, Poecilia reticulata
DADDA, MARCO;AGRILLO, CHRISTIAN;BISAZZA, ANGELO;
2015
Abstract
It has been hypothesized that cerebral lateralization can significantly enhance cognition and that this was one of the primary selective forces shaping its wide-spread evolution amongst vertebrate taxa. Here, we tested this hypothesis by examining the link between cerebral lateralization and numerical discrimination. Guppies, Poecilia reticulata, were sorted into left, right and non-lateralized groups using a standard mirror test and their numerical discrimination abilities tested in both natural shoal choice and abstract contexts. Our results show that strongly lateralized guppies have enhanced numerical abilities compared to non-lateralized guppies irrespective of context. These data provide further credence to the notion that cerebral lateralization can enhance cognitive efficiencyFile | Dimensione | Formato | |
---|---|---|---|
fnbeh-09-00285.pdf
accesso aperto
Licenza:
Accesso libero
Dimensione
715.53 kB
Formato
Adobe PDF
|
715.53 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.