This work encompasses a facile method for tailoring surface defects in electrospun TiO2 nanofibers by employing hydrogen plasma treatments. This amiable processing method was proven with SQUID, EPR, and XPS to be highly effective in generating oxygen vacancies, accompanied by the reduction of Ti4+ centers to Ti3+, resulting in the formation of black titania. The treatment temperature was found to affect the Ti3+/Ti4+ ratios and surface valence, while preserving the original 1D morphology of the titania fibers. Ab initio DFT calculations showed that a high concentration of oxygen vacancies is highly efficient in producing midgap states that enhance the system absorption over the whole visible range, as observed with UV/ vis/NIR diffuse reflectance spectroscopy. Pristine TiO2 nanofibers produced a photocurrent density of ∼0.02 mA/cm2 at 1.23 V vs RHE, whereas the hydrogen plasma treatment resulted in up to a 10-fold increase in the photoelectrochemical performance.

Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance

MACCATO, CHIARA;
2015

Abstract

This work encompasses a facile method for tailoring surface defects in electrospun TiO2 nanofibers by employing hydrogen plasma treatments. This amiable processing method was proven with SQUID, EPR, and XPS to be highly effective in generating oxygen vacancies, accompanied by the reduction of Ti4+ centers to Ti3+, resulting in the formation of black titania. The treatment temperature was found to affect the Ti3+/Ti4+ ratios and surface valence, while preserving the original 1D morphology of the titania fibers. Ab initio DFT calculations showed that a high concentration of oxygen vacancies is highly efficient in producing midgap states that enhance the system absorption over the whole visible range, as observed with UV/ vis/NIR diffuse reflectance spectroscopy. Pristine TiO2 nanofibers produced a photocurrent density of ∼0.02 mA/cm2 at 1.23 V vs RHE, whereas the hydrogen plasma treatment resulted in up to a 10-fold increase in the photoelectrochemical performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3186838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 62
social impact