In this paper, we report the first successful preparation of calcium fluoride by miniemulsion. Calcium fluoride is a widely investigated material known to be an excellent host for luminescent lanthanide ions; herein we report an easy and reproducible way to achieve the controlled doping of CaF2 nanostructures (Ca : Ln 1⁄4 50 : 1, with Ln 1⁄4 SmIII, GdIII and TbIII) at room temperature, through the miniemulsion approach. The materials are thoroughly characterized from a structural, morphological and functional point of view, by the combined use of several techniques, i.e. X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning and Transmission Electron Microscopy (SEM and TEM respectively) and photoluminescence (PL) spectroscopy. In addition, to get further insight into the local structure around the dopants, Extended X-ray Absorption Fine Structure (EXAFS) experiments are performed.

Room temperature crystallization of highly luminescent lanthanide-doped CaF2 in nanosized droplets: first example of the synthesis of metal halogenide in miniemulsion with effective doping and size control

DOLCET, PAOLO;CASARIN, MAURIZIO;GROSS, SILVIA
2015

Abstract

In this paper, we report the first successful preparation of calcium fluoride by miniemulsion. Calcium fluoride is a widely investigated material known to be an excellent host for luminescent lanthanide ions; herein we report an easy and reproducible way to achieve the controlled doping of CaF2 nanostructures (Ca : Ln 1⁄4 50 : 1, with Ln 1⁄4 SmIII, GdIII and TbIII) at room temperature, through the miniemulsion approach. The materials are thoroughly characterized from a structural, morphological and functional point of view, by the combined use of several techniques, i.e. X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning and Transmission Electron Microscopy (SEM and TEM respectively) and photoluminescence (PL) spectroscopy. In addition, to get further insight into the local structure around the dopants, Extended X-ray Absorption Fine Structure (EXAFS) experiments are performed.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3186857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact