Generalized Quantum Theory (GQT) seeks to explain and predict quantum-like phenomena in areas usually outside the scope of quantum physics, such as biology and psychology. It draws on fundamental theories and uses the algebraic formalism of quantum theory that is used in the study of observable physical matter such as photons, electrons, etc. In contrast to quantum theory proper, GQT is a very generalized form that does not allow for the full application of formalism. For instance neither a commutator, such as Planck’s constant, nor any additive operations are defined, which precludes the usage of a full Hilbert-space formalism. But it is a formalized phenomenological theory that is applicable whenever the core element of a quantum theory needs to be captured, namely in the presence of incompatible or non-commuting operations. As a consequence, it also predicts nonlocal, generalized entanglement correlations in systems other than proper quantum systems. In this paper we summarize the specific scientific evidence relating to the quantum-like mental, behavioral and physiological nonlocal correlations. Such non-local, generalized entanglement correlations are expected, both in space and time, between subsystems of a larger system, whenever observables pertaining to the global system are incompatible or complementary to observables pertaining to subsystems, as predicted by GQT. The result is a coherent explanation of a significant amount of controversial and seemingly weird occurrences that cannot be explained by classical physical laws. This review also offers a new perspective of the human mind’s potential.

Mental, behavioural and physiological nonlocal correlations within the Generalized Quantum Theory framework

TRESSOLDI, PATRIZIO;PEDERZOLI, LUCIANO
2016

Abstract

Generalized Quantum Theory (GQT) seeks to explain and predict quantum-like phenomena in areas usually outside the scope of quantum physics, such as biology and psychology. It draws on fundamental theories and uses the algebraic formalism of quantum theory that is used in the study of observable physical matter such as photons, electrons, etc. In contrast to quantum theory proper, GQT is a very generalized form that does not allow for the full application of formalism. For instance neither a commutator, such as Planck’s constant, nor any additive operations are defined, which precludes the usage of a full Hilbert-space formalism. But it is a formalized phenomenological theory that is applicable whenever the core element of a quantum theory needs to be captured, namely in the presence of incompatible or non-commuting operations. As a consequence, it also predicts nonlocal, generalized entanglement correlations in systems other than proper quantum systems. In this paper we summarize the specific scientific evidence relating to the quantum-like mental, behavioral and physiological nonlocal correlations. Such non-local, generalized entanglement correlations are expected, both in space and time, between subsystems of a larger system, whenever observables pertaining to the global system are incompatible or complementary to observables pertaining to subsystems, as predicted by GQT. The result is a coherent explanation of a significant amount of controversial and seemingly weird occurrences that cannot be explained by classical physical laws. This review also offers a new perspective of the human mind’s potential.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3188344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact